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The biased majority rule of cellular automata takes a spin up if and only if 
at least two of its four nearest neighbors on the square lattice are up. We 
generalize this type of bootstrap percolation by introducing quenched site dilu- 
tion as well as a random birth and decay process. Our Monte Carlo simulations 
then give first-order transitions qualitatively similar to our results from mean- 
field reaction equations describing the induction of T-cell unresponsiveness in 
the immune system. 
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1. I N T R O D U C T I O N  

The immune system protects us from invasion by pathogenic agents. In 
order to perform this task, it has developed highly specific and efficient 
responses for neutralizing the foreign antigens, i.e., the foreign cells and 
molecules. The basic defense cells of the immune system are the B and T 
lymphocytes. B lymphocytes respond to antigen by producing antibody 
molecules. T lymphocytes are involved in cell-cell interactions. Some T 
cells are responsible for killing tumors or virus-infected cells. Others, such 
as the "helper" T lymphocytes have a regulatory function and secrete 
factors that promote the activation of the B and T effector cells/1) 

It has been reported that these helper T cells may become unrespon- 
sive after an antigen-driven stimulation/2 41 Following a productive activa- 
tion, a long-lasting phase of "anergy" is observed, presumably related to a 
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modification in the state of the T-cell receptors at the surface of these 
cellsJ 4-6) This phenomenon is important for the downregulation of immune 
responses, and might also participate in the mechanisms of self-tolerance. 

A theoretical model based on a phosphorylation cascade has been 
developed for the understanding of T-cell unresponsivenessJ 5) It describes 
a molecular mechanism both for desensitization in the presence of antigen 
and persistent lowering of cell responsiveness after stimulus removal. 
Important features of this model can be summarized as follows. (1)T 
cells are stimulated by antigen immobilized on antigen-presenting cells 
or unsolubilized antibodies; binding of the T-cell antigen receptors 
(TCR) to their external ligands is therefore accompanied, as a function of 
ligand concentration, by an increase in receptor density on the contact 
area. (2) Receptor aggregation induces the activation of receptor-associated, 
autophosphorylating enzymes. Autophosphorylation markedly enhances 
the phosphorylative activity of these enzymes and represents an autoca- 
talytic step in the early events of TCR signaling. (7) (3) Enzyme activation 
also leads to reversible phosphorylation of the TCR transducing system; 
phosphorylation has a dual role and is assumed to regulate both positively 
and negatively the signaling pathway leading to cell activation. 

Mean-field equations for these density-dependent phosphorylation/ 
dephosphorylation reactions involving the T-cell receptors have, in some 
parameter region, given bistable solutions; either the fraction of 
autophosphorylated enzymes is low or it is high. This existence of a first- 
order transition did not rely on details like birth and death processes. One 
prediction of the mean-field model is  that, following activation, the 
phosphorylative activity of the receptor-associated enzymes may remain 
above background level after removal of the antigen. Residual activity or 
phosphorylation of the T-cell receptor transducing system could therefore 
be responsible for deficient signal transduction and lead to a state of 
prolonged unresponsiveness. (5'6) 

The present note tries to find a simple lattice model also giving 
such first-order transitions due to bistability, but allowing for spatial 
fluctuations of the various receptor concentrations. 

2. T H E  LATTICE M O D E L  

The sites of a square lattice symbolizing the surface of a T cell are 
initialized randomly: either empty (E) with probability 1 - x  or occupied 
with probability x. An occupied site may be an unphosphorylated (R) 
receptor or a phosphorylated (P) receptor; again the initial distribution is 
random, with a probability p for phosphorylated and a probability 1 - p  
for unphosphorylated. 



Di lute Bootstrap Percolation 845 

After this initialization the empty and occupied sites remain empty and 
occupied forever, but the phosphorylation state of a receptor can change: 
a receptor is phosphorylated if and only if at least two of its four nearest 
neighbors are phosphorylated (parallel updating). This rule is assumed 
here to account qualitatively and in a compact way for the autocatalytic 
activation of the receptor-associated autophosphorylating enzymes, 
through interactions between adjacent molecules. It reflects the resulting 
net balance of phosphorylation/dephosphorylation of the T-cell receptors. 
Mathematically, we represent a P site by an up spin, and E and R sites by 
down spins; E sites always remain E, whereas R sites may become P sites 
and P sites may become R sites. 

This mixture of three components E, R, and P is simulated via bit-by- 
bit parallel updating (multispin coding) on a Cray-YMP, with a speed of 
8 sites per microsecond and per processor to initialize a site, and about 
600 sites per microsecond and per processor for the later iterations, with 
systems consisting typically of 10 million sites and up to 256 million sites 
(four orders of magnitude above the natural size). In two limits we recover 
known cases: 

(a) E and R only (p = 0): nothing changes, random site percolation. 

(b) R and P only (x=  1): now a spin is down if three or four of its 
neighbor spins are down; otherwise (i.e., when at least two neighbors are 
up) it points up (gets phosphorylated). This "reversible" bootstrap (s) per- 
colation problem, also called biased majority rule, was discussed in ref. 9. 
For small p the fraction of phosphorylated sites remains small, and we end 
up with oscillations of period two. For intermediate and large p, finally all 
lattice sites get phosphorylated and the system ends in a fixed point of all 
spins up. The threshold concentration for this transition varies for L .  L 
lattices asymptotically as (log L)-1/2. 

3. DILUTION 

As soon as x is slightly below unity, the behavior of the system in case 
(b) of Section 2 is drastically changed. In a large enough lattice there 
will necessarily be some isolated clusters of R sites which never can get 
phosphorylated. Also, the end result is always an oscillation of period two, 
except for p = 1, where a fixed point with finite concentrations of all three 
types was observed. Thus the phase transition of case (b) has vanished 
completely. Therefore the behavior at x = 1 is quite different from that for 
x going to unity. Of course, in a small lattice of size 192 * 192 this discon- 
tinuity is smoothed out and we still see that transition if the lattice is nearly 
fully occupied. For x=0.99,  0.98, 0.96, and 0.94 we find a transition 
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between oscillations and fixed points at p near 0.3, 0.4, 0.86, and 0.97, 
respectively. For p smaller than these x-dependent thresholds, an oscilla- 
tion (limit cycle of period two) was found. As some remmant of the tran- 
sition of case (b) we found that for x above 0.9 and low p a rather large 
number of iterations is needed to get to the final limit cycle (1000 iterations 
at x = 0.99 and p = 0.2). 

It is doubtful that the distinction between oscillations and fixed points 
has any immunological significance, since limit cycles may be the result of 
the parallel (synchronous) updating procedure. More relevant is the final 
concentration of P sites (presumably more relevant than the question if 
they percolate(l~ Our simulations for large lattices show that with 
increasing initial number of phosphorylated sites the final mean number 
increases roughly a s  p2 as long as the number of phosphorylated sites is 
appreciably smaller than the number of occupied (P and R) sites. For large 
x and large p, the number of phosphorylated sites levels off to a value close 
to but always below the number of occupied sites; in other words, some R 
sites always remain. 

For a fixed initial concentration p of phosphorylated sites of 5 % the 
final number of phosphorylated receptors is at high x about two orders of 
magnitude below the initial number of P sites; it becomes rapidly smaller 
if x is diminished. That has to be expected, since at small x we will have 
rarely two P sites close by, since most sites are E; therefore most of the 
initial P sites are converted to R. Quantitatively, the decay with decreasing 
x is roughly a stretched exponential. Apart from x near 0.1, we roughly fit 
the final fraction pf of phosphorylated sites to 

loglo p = 4 -  6X -1/4 

for an initial concentration p = 0.05. At x = 0, of course, p is also zero. 
So far the transition (9) for x =  1 has vanished once we dilute the 

lattice and work with x below unity. Now the final concentration of 
phosphorylated sites is a smooth but rapidly varying function of the initial 
concentration p and of x. 

4. B I R T H  A N D  D E A T H  

Sharp transitions are recovered in this model if we include random 
growth and decay processes to follow the previously described (bootstrap 
percolation) initialization. Birth and death allow changes of the receptor 
positions and receptor status and thus get closer to a mean-field descrip- 
tion with infinite diffusivity. In addition, this process accounts for the 
observed recycling and turnover of the T-cell receptors and associated 
enzymes. 
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Thus after an oscillation of period two has been reached, we randomly 
take away receptors (phosphorylated or not phosphorylated) and also 
randomly add new unphosphorylated receptors; the added receptors get 
phosphorylated if and only if at least two of their neighbors at that time 
are phosphorylated. 

More precisely, the initialization is followed by many iterations, and 
each iteration consists of N steps if the lattice contains N sites. For each 
step a random number z is drawn from the interval between 0 and 1. For  
z > x a randomly selected site is made empty (independent of whether it 
was empty or occupied before); otherwise a randomly selected site is 
occupied and immediately it gets phosphorylated if and only if at least 
two neighbors are phosphorylated at that time (if for z < x the randomly 
selected site is already occupied, its status is not changed). In this way the 
ratio of occupied to empty sites remains unchanged by the growth and 
decay steps, apart from fluctuations. However, the ratio of phosphorylated 
and unphosphorylated receptors can change. 

Simulations are now orders of magnitude slower, since the growth and 
decay process is not vectorized and since the repeated call for random 
numbers makes bit handling inefficient. Thus a standard Fortran program 
on a SUN sparc2 work station needed nearly 9 #sec/step. We simulated 
L �9 L square lattices with L = 192 and 1000 with up to 3000 iterations (200 
iterations for a test at L = 4000, and 20,000 iterations for a test at L = 500). 
Fewer simulations were made for 1000,1000 triangular lattices where 
receptors were phosphorylated if at least three out of the six neighbors 
were phosphorylated. Thus on both lattices a receptor gets or remains 
phosphorylated if and only if at least half of its neighbors are 
phosphorylated. 

Already the small lattices show clear evidence for a transition. 
For small initial concentrations x of occupied sites the number of 
phosphorylated receptors goes to zero exactly, whereas for large x it grows 
until nearly all receptors are phosphorylated. For  example, at a fraction 
p = 0.3 of phosphate carriers among the initial receptors (square lattice), we 
find the phosphorylation ratio to decrease at x = 0.85 and to increase at 
x = 0.86, though our 3000 iterations are not long enough to get a station- 
ary equilibrium; at p = 0.3 and x = 0.9 such equilibrium was obtained after 
about 2000 iterations for L=1000 ,  with 10% empty sites, 0.4% 
unphosphorylated receptors, and thus 89.6% phosphorylated sites. 
Figure 1 gives an example of the time dependence of the fraction of 
phosphorylated receptors for different dilutions. As shown in Fig. 2, the 
critical concentration xc = x~.(p) stayed at about 0.85 if p was at least 0.3, 
and increased toward unity if p decreased toward zero. For large p nearly 
all remaining receptors were phosphorylated, whereas for small p at the 
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Fig. 1. Time dependence of the fraction of phosphorylated receptors for initial phosphoryla- 
tion ratio p ~ 0 , 3  in a 1000,1000 lattice. The different symbols correspond to different 
dilutions: x =0.95, 0.90, 0.88, 0,86, 0.85, and 0.80 from above. (For x =  1.0, not shown, finally 
p = l . )  
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Fig. 2. Phase diagram for the square and triangular lattices, as indicated by the different 
symbols, in the case of the birth and death simulations, [n the upper right part of tI'ie figure, 
many receptors remain phosphorylated, whereas in the left part the number of phosphorylated 
receptors goes to zero. 
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Table I 

p xc(sq) xc(tr) 

0.10 1.00 - -  

0.15 0.96 - -  
0.20 0.90 1.00 
0.30 0.86 0.92 
0.50 0.84 0.83 
0.70 0.86 0.83 
0.90 0.86 0.83 
0.99 0.86 0.86 

transition point most of the receptors carried no phosphate. Thus, by 
adjusting parameters, jumps in the final concentration of phosphorylated 
receptors from zero to about any number below 86% could be obtained. 

Table I gives the first-order transition points for square (sq) and 
triangular (tr) lattices. Note the similarity of the results for high p; in this 
region our results seem to be rather independent of the lattice structure. 
They are also in qualitative though not in quantitative agreement with the 
mean-field approach. (5~ 

In reality, different time scales are involved in the rather slow birth 
and decay process and the much faster interactions between neighboring 
receptors. In order to take that aspect into account, we added after each 
sweep through the lattice (with birth and death processes) a sufficient 
number (typically of the order of ten) of phosphorylation iterations (P site 
if and only if at least two neighbors were P sites) until the lattice equi- 
librated, i.e., until each site became stable or oscillated with period two. 
Only then was another sweep of birth and death processes started, and so 
on. The thresholds xc then were reduced by a few percent to about 0.85, 
0.81, and 0.81 at p=0.25,  0.50, and 0.75, respectively. This tendency is in 
agreement with the mean-field results, where the bistability region is dis- 
placed toward lower densities as a function of decreasing recycling rates. 
The number of birth and death iterations needed to remove all P sites for 
x below xc, and the fluctuations in the stationary numbers of P sites for x 
above x,,  seemed to diverge if x approached the threshold from below and 
above, respectively. Thus the critical density xc seems to represent a critical 
point with divergences of fluctuations and relaxation times, and long times 
are required to remove all P in the vicinity of the transition point (x ~ xc). 
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5. C O N C L U D I N G  R E M A R K S  

Although strongly simplified, our lattice approach shows that 
bistability due to autophosphorylation can be preserved in the presence of 
spatial density fluctuations, when random birth and death of receptors are 
included in the model. Moreover, long-lived metastable states may appear 
for a system that functions below but close to the critical density if these 
growth and decay processes occur on a slower time scale than the chemical 
reactions. 

In the framework of our mean-field approach gradual recovery of 
T-cell immunocompetence in the absence of antigen should arise from a 
heterogeneity of the cell population: in the course of cell division some cells 
jump back to their basal state (low level of phosphorylated receptors) and 
become fully responsive again. As shown here for a probabilistic automata 
network approach, long-range interactions in a spatially distributed system 
provide a mechanism of "delayed" removal of phosphorylated receptors 
that might account for the slow recovery from unresponsiveness that has 
been observed experimentally. (41 These results also suggest that controlling 
the rate of turnover and displacement of the cell receptors should strongly 
influence the rate at which cell competence is reestablished. 
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